Toxic Metals; stool

Toxic Metals	Result	Unit	Percentile 68 th 95 th	Reference Interval
Antimony	0.048	mg/kg Dry Wt		< 0.050
Arsenic	0.27	mg/kg Dry Wt	Δ	< 0.20
Beryllium	0.004	mg/kg Dry Wt		< 0.011
Bismuth	0.045	mg/kg Dry Wt		< 0.100
Cadmium	0.39	mg/kg Dry Wt		< 0.50
Cesium	0.030	mg/kg Dry Wt		< 0.1
Copper	78	mg/kg Dry Wt	Δ	< 60
Gadolinium	0.008	mg/kg Dry Wt		< 0.03
Lead	0.10	mg/kg Dry Wt		< 0.30
Manganese	127.7	mg/kg Dry Wt		< 200
Mercury	0.058	mg/kg Dry Wt	Δ	< 0.050
Nickel	5.7	mg/kg Dry Wt		< 8.0
Platinum	<dl< td=""><td>mg/kg Dry Wt</td><td></td><td>< 0.003</td></dl<>	mg/kg Dry Wt		< 0.003
Thallium	0.012	mg/kg Dry Wt		< 0.020
Tungsten	0.122	mg/kg Dry Wt		< 0.130
Uranium	0.047	mg/kg Dry Wt		< 0.100
Water Content	Result	Unit	-2SD -1SD Mean +1SD +2SD	Reference Interval
Water Content	78.3	%		66.3 – 78.8

Analysis of elements in feces provides a means to assess oral exposure, and to a lesser extent endogenous detoxification of
potentially toxic metals. For several toxic elements such as mercury, cadmium, lead, antimony and uranium, biliary excretion
of metals into feces is a primary natural route of elimination from the body. Studies performed at Doctor's Data demonstrate
that the fecal mercury content and number of amalgam surfaces are highly correlated. Therefore people with several
amalgams in place will typically have higher concentrations of fecal mercury than people without amalgams.

Results are reported as mg/kg dry weight of feces to eliminate the influence of variability in water content of fecal specimens.

To provide guidance in interpretation of results, patient values are plotted graphically with respect to percentile distribution of the population base. Since this test reflects both oral exposure and biliary excretion of metals, overt clinical associations are not directly implied.